Decision Library (DecLib)
V 3.0

A Universal
Application Programming Interface
To
PCI Direct 1/0O Card

Users Manual

Design & Implementation by
Decision Computer International Company

Contents

(I [ol (Vo3 (oo R O T PSPPSR U PSP PRSPPI 3
2. FRALUIES ...ttt e e e e e 4
3. DistribDULION CONTENES ...cooiiiiiie e et e e e e et e e e et e e e e ente e e e enteeeeesnbeeeeennees 5
4. Install and UNINSTAILcoooii ettt e e e e e e et ee e e e e e s beeaeeaeaeaanan 6
LT B 1oV o =1 oo T RSP 7
6. Backward CompPatiDilityooooii e a e e e e 8
7. DeclLib function calls and Device Type definition ... 9
7.1. Function to open and ClOSE DEVICESuuiiiiiiiiiiiiii ettt e e e e e e et e e e e e e e nnneeeeaaeeean 10
7.2. Function to get device Dase addressoiii i 13
7.3. FUNCLION TOF 1/Q ACCESS ...neeiieiieei e ettt ettt e e e ettt e e e e e ettt e e e e e e sanseteeeeeeeseaannssaaeeeaeeeannnnnees 17
8.1. Using DecLib with different programming [anguageccccoiiiiiiiiiiiiiei e 21
S O SRS 22
8.3 VISUBI BASIC ...ttt ettt e e e e e e e e s 22
9. Technical support and FEEADACKuuui s 23

1. Introduction

This document provides the Decision Library (DecLib) Specifications, including all function calls,
installation requirements, and operating procedures.

Disclaimer:

Decision Computer International Company (DECISION) cannot take responsibility for consequential
damages caused by using this software. In no event shall DECISION be liable for any damages
whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss
of business information, or any other pecuniary loss) arising out of the use of or inability to use this
product, even if we have been advised of the possibility of such damages.

Trademark Acknowledgments:

Windows 98, Windows ME, Windows 2000, Windows XP, Visual Basic, Visual C++ are registered
trademarks of Microsoft Corporation.

2. Features

The Decision Library (DecLib) was created to provide a standard way to access the functionality provided
by all PCI Direct I/O cards products. Specifically, the DecLib provides the following features:

e PCI Device Support
DeclLib support all DECISION PCI Direct I/O cards. If you would like to use ISA cards, please use
Dynamic Industrial Interface (DII).

e Platform-independent
The library is compatible under Windows 98, windowsME, Windows 2000 and windows XP. The
compatibility under these operation systems guarantees that programs written for either operating
system will work unchanged on the other, even without recompilation.

e Abstracts Card Functionality from Card Design
The interface concentrates on a card’s functionality and hides the user from having to know specifics
about the card design, for example, which port needs to be accessed in order to access specific
functionality.

e Multiple Card Support
Old DecLib don't support multiple card access, but it does now. You could access device by its name or
by its information (device type, index).

e Device Naming
Each device can be given it's own name, specified by the function “Device Naming” on DIl Control
Panel Applet. This allows easier access of devices and cards in situations, where multiple cards of the
same type are installed.

e Programming Language Independent
The library provides a language independent way to access the industrial /0O cards, by using a
Dynamic-Link-Library architecture.

3. Distribution Contents

The Decision Library (DecLib) Distribution consists of the following components:

1.
2.

A Control Panel Applet to view the device information and for device naming/renaming.
WDM Device Driver for Windows 98, ME, 2000, XP.

A Win32 DLL (file DecLib.dll) for accessing the driver. In order to access the DLL, a C-Header file and
a visual Basic file containing the function declarations are included.

The Visual C++ sample applications

The Sample applications demonstrate the use of the driver API by graphically.The applications runs
unchanged under Windows 98/ME/2k/XP. They were developed using Visual C++ 6.0. The full source
codes are included.

After installation, you can find a folder “DecLib Test Programs” under your installation directory, and all
sample applications are in it (includes VC++ and VB samples).

The Visual Basic sample applications
The Visual Basic samples are similar to the Visual C++ sample, except it's written using Visual Basic
Version 6.0.

After installation, you can find a folder “DecLib Test Programs” under your installation directory, and all
sample applications are in it (includes VC++ and VB samples).

4.Install and Uninstall

This chapter specify installation and uninstalltion for DDI software and Decision device. DDI (Decision
Device Interface) software contains two kinds of library, DIl and DecLib, and users could choose each of
them during installing DDI software (Notice that DIl and DecLib can not been mix-use).

4.1 DDI (Decision Device Interface) Software Installation:

Step 1: Execute the DDI install program (DDI_130.exe)

Step 2: Following the specifications of DDI install program. During installtion, program would query which
library you use. To choose your favorite library and continue to finish installing.

After installation, you could find folder “Decision Device Interface 3.0” on [Start] -> [Programs].

4.2 DDI Software Uninstallation:

You could uninstall by following two methods:

Method 1: click [Start] -> [Programs] -> [Decision Device Interface 3.0] -> Remove
Decision Device Interface 3.0

Method 2: On the “Add/Remove Programs” on Control Panel, You could find “Decision
Device Interface 3.0”, and remove it.

4.3 Device Installation:

Step1: Plug your card on empty PCI or ISA slot, and boot.
Step2: When entering operation system, hardware wizard would find your card automatically

Step3: following the hardware wizard to continue installation. During installing, you might specify your
driver location automatically.

Step4: After installing driver, computer may be reboot. And you would see youir device on “Device
Manager”.

4.4 Device Unnstallation:

Step1: On [Control Panel] -> [System] -> [Hardware] -> [Device Manager], choose the device you would
like to uninstall and click right mouse button --> uninstall.

Step2: Under the folder “C:\Windows\inf” (2k/XP is on “C:\WinNt\inf"), you could find some oem#.inf files
(# represent digits). To delete these oem#.inf files that contains your card information (open these
.inf as test program).

Step3: Under the folder “C:\Windows\system32\drivers” (2k/XP is on “C:\WINNT\system32\drivers”), you
could find driver for your card, delete them. (file name: XXXX.sys, XXXX represent your device
name).

5. Device Naming
The Decision Library (DecLib) has a powerful feature: Device Naming.
After the installation of devices, each device is assign a default unique name. And you could view or fix
device's name on the DIl Control Panel Applet. When creating your application program, you can then
access that device using the name, or you may prompt the user for the name, or even let the user
graphically browse for the correct device for your application.
This technique has one important feature:
e More clarity when using multiple devices
Using device names, you can now access more easily and clearly multiple devices of the same type in
your machine. For example, if you have 3 pieces of 8 Relay 8 Photo Isolator cards in your machine,
you could access these cards not only by their type and index, which often lead to confusion. You can
now just assign a name to each card on DIl Control Panel Applet, especially a meaningful name.
There is something to care when using DIl Control Panel Applet for naming/renaming:

e Please reboot your computer after you change device's name or the device can't work.

¢ You might name/rename your device only using characters, digits, space and underscore. Others
might cause problem.

¢ Don't name/rename the same name to different devices or it would cause problem.

e The maximum length of device name is 100 bytes (100 characters).

6. Backward compatibility

This new version of Decision Library (DecLib 3.0) would good backward compatibility feature. You won't
change any piece of your old program codes (but something would be concerned, list below), because the
interface of the new-version DecLib is the same to that of the old-version one. You would only replace new
file DecLib.DLL and DecLib.h with old ones, and then your programs could work well as before.

Some differences to old version of DecLib (using WDM 1.20v device driver):

« Internal implementation of some functions is changed, but the interfaces of all functions are the same
to old-version DeclLib.

» Because old-version DecLib don't support multiple-card access, the function CloseDecPort only closes
the device that used in program in past. But now, this function closes all devices that were opened
before this function been called. If you would like to close only one device at one time, you
could use the new function CloseDevice.

- Some new functions add to this version of library. Like CloseDevice, GetDevicePortAddress.

- The meaning of device index is not the same to the past. The older one represents its PCI bus position,
but now is another. You don't need to know what it means. The only thing you needs to know is that
device index of any installed device is unique and you could check it on Device Information of DI
Control Panel Applet.

7. DecLib function calls and Device Type definition

Since the DIl was developed in the C++ language, some data types used may not be present in the
programming language you want to use.

Please find the following data type conversion table for your convenience:

BOOL A 32-bit integer, either 0 (FALSE) or 1 (TRUE)
LPTSTR A 32-bit flat pointer to a zero terminated string
UCHAR Unsigned char

WORD double bytes

Also note that the DLL employs the Standard Call (Pascal) calling mechanism, which is used for all system
Dlls as well and is compatible with Visual Basic.

Below is Device Type definition:

DECISION_PCI_IND_CARD 0x0001
DECISION_PCI_8255_CARD 0x0002
DECISION_PCI_4P4R_CARD 0x0003
DECISION_PCI_8P8R_CARD 0x0004
DECISION_PCI_16P16R_CARD 0x0005
DECISION_PCI_M8255_CARD 0x0007
DECISION_PCI_12ADDA_CARD 0x0008
DECISION_PCI_14ADDA_CARD 0x0009

7.1 Functions to open and close Devices

OpenDecPort

This function opens devices port for further access.

Declaration

BOOL OpenDecPort (void);

Parameters

no any parameter.

Return value

TRUE if successful, FALSE otherwise.

Example
OpenDecPort ();

Remarks

This function is provided for backward compatibility. Now open-device facility is implemented by functions
that get device base address (See 7.2 “Function to get device base address” for detail). New users could

directly use functions of “GetDevicePortAddress*” series.

10

CloseDecPort

This function closes all devices.

Declaration

void CloseDecPort (void);

Parameters

no any parameter.

Return value

no any return value.

Example
CloseDecPort ();

11

CloseDevice

This function closes a specified device;

Declaration

BOOL CloseDevice (unsigned short usAddress);

Parameters

usAddress Device base address for that device you would like to close.

Return value
TRUE if successful, FALSE otherwise.

If FALSE, the device base address you specified is not correct.

Example

CloseDevice (usBaseAddress);

12

7.2 Functions to get device base address

GetDevicePortAddress

The function return device base address. User provides device type, and this function choose any one
installed device that fits to this type to open.

Declaration

BOOL GetDevicePortAddress (unsigned int DeviceType,
unsigned short *pusAddress
);

Parameters

DeviceType Specfied device type to open. For more information, please see the chapter “DecLib
function calls and Device Type definition”.

pusAddress A pointer to a unsigned short variable receiving the base address of opened device.

Return value

TRUE if successful, FALSE otherwise.

Example

unsinged short usBaseAddress;
if (!GetDevicePortAddress (DECISION_PCI_IND_CARD, &usBaseAddress))

printf (“ Find no any PCI IND Card”);
return FALSE;

Remarks
Function GetDevicePortAddress not only gets device base address, but implements open-device facility

now. It means that user don't use function OpenDecPort any more. But older Program that uses function
OpenDecPort won't be changed because we also reserves OpenDecPort for compatibility.

13

GetDevicePortAddressEx

The function return device base address. User provides nothing, but this function choose any one installed
device to open.

Declaration

BOOL GetDevicePortAddressEx (unsigned short *pusAddress);

Parameters

pusAddress A pointer to a unsigned short variable receiving the base address of opened device.

Return value

TRUE if successful, FALSE otherwise.

Example

unsigned short usBaseAddress;
if (!GetDevicePortAddressEx (&usBaseAddress))

printf (“ Find no any Decision Card”);
return FALSE;

Remarks
Function GetDevicePortAddressEx not only gets device base address, but implements open-device facility

now. It means that user don't use function OpenDecPort any more. But older Program that uses function
OpenDecPort won't be changed because we also reserves OpenDecPort for compatibility.

14

GetDevicePortAddressEx2
The function return device base address. User provides device type and device index, and then this
function opens this specified device.
Declaration
BOOL GetDevicePortAddressEx2 (unsigned int DeviceType,

unsigned int CardID,
unsigned short *pusAddress

),
Parameters
DeviceType Device type for specified device.

CardID Device index for specified device. Please see the chapter “Backward Compatibility” for
more information.

pusAddress A pointer to a unsigned short variable receiving the base address of opened device.

Return value

TRUE if successful, FALSE otherwise.

Example

unsigned short usBaseAddress;
if (/GetDevicePortAddressEx2 (DECISION_PCI_IND_CARD, 1, &usBaseAddress))

printf (“Find no specified PCI IND Card”);
return FALSE;

Remarks

Function GetDevicePortAddressEx2 not only gets device base address, but implements open-device
facility now. It means that user don't use function OpenDecPort any more. But older Program that uses
function OpenDecPort won't be changed because we also reserves OpenDecPort for compatibility.

15

GetDevicePortAddressEx3

The function return device base address. User provides device name, and then this function opens this
specified device.

Declaration
BOOL GetDevicePortAddressEx3 (LPTSTR IpszDeviceName,
unsigned short *pusAddress
);
Parameters
IpszDeviceName The name of the device to open.
pusAddress A pointer to a unsigned short variable receiving the base address of opened

device.

Return value

TRUE if successful, FALSE otherwise.

Example

unsigned short usBaseAddress;
if (!GetDevicePortAddressEx3 (“PCI_INDO001”, &usBaseAddress))

printf (“ Find no PCI device: PCI_IND0001");
return FALSE;

Remarks

Function GetDevicePortAddressEx3 not only gets device base address, but implements open-device
facility now. It means that user don't use function OpenDecPort any more. But older Program that uses
function OpenDecPort won't be changed because we also reserves OpenDecPort for compatibility.

16

7.3 Functions for I/0 Access
outportb

This function writes byte-data to device.

Declaration
BOOL outportb (unsigned short usAddress,
unsigned char ucData
);
Parameters
usAddress The starting address to writeA variable receiving the address of opened device
ucData Byte-Data to write

Return value

TRUE if successful, FALSE otherwise.

Example

unsigned short usBaseAddress; // device base address

unsigned short ljsOffset =0; /I offset; port number
BOOL bRetCode;

bRetCode = outportb (usBaseAddress + usOffset, 1);
if ('bRetCode)

/I error handle code

17

outport

This function writes WORD-data (double bytes) to device.

Declaration
BOOL outportb (unsigned short usAddress,
unsigned short usData
);
Parameters
usAddress A variable receiving the address of opened device
ucData WORD-Data to write

Return value

TRUE if successful, FALSE otherwise.

Example

unsigned short usBaseAddress; // device base address

unsigned short ljsOffset =0; /I offset; port number
BOOL bRetCode;

bRetCode = outportb (usBaseAddress + usOffset, 1);
if ('bRetCode)

/I error handle code

18

inportb

This function reads byte-data from device.

Declaration

unsigned char inportb (unsigned short usAddress);

Parameters

usAddress A variable receiving the address of opened device

Return value

byte-Data that read from device

Example

unsigned short usBaseAddress; // device base address

unsigned char u'cData; /I returned data
unsigned short usOffset = 0; /I offset; port number

ucData = inportb (usBaseAddress + usOffset);

19

inport

This function reads WORD-data (double bytes) from device.

Declaration

unsigned short outportb (unsigned short usAddress);

Parameters

usAddress A variable receiving the address of opened device

Return value

word-Data that read from device

Example

unsigned short usBaseAddress; // device base address

unsigned short LJsData;
unsigned short usOffset = 0; /I offset; port number

usData = inport (usBaseAddress + usOffset);

20

8. Using the DecLib with different programming languages

This chapter provides an overview about how to best utilize the DecLib in various programming languages.
If you experience difficulties calling the DecLib functions from your programming language, or are using a
programming language not covered in this documentation, please feel free to visit our web-site, to which

we will post updated information regarding DecLib programming issues. You may also contact our
technical support through our web-site.

21

8.1. C++

Since the DecLib DLL was developed using C++, you may easily use it to access PCI direct I/O devices.
For this purpose, a C++ header file ("DecLib.h") as well as an import library ("DecLib.lib") are being
shipped with the interface library. Make sure that you have installed the development release, not the retail
release, which does not include support programming files.

In your C/C++ source code files, just include the "DecLib.h" include file, then you can use any of the

functions provided by the DecLib DLL. Be sure to include the import library "DecLib.lib" during the linking
step of your application, so your applications successfully references the actual interface DLL.

8.2. Visual Basic

If you are using Visual Basic to access any I/O Devices supported by the Decision Library (DecLib), you
can call the DecLib DLL directly. But before that, you should import them.

You may also consult the Visual Basic sample application for more information about using Visual Basic to
access the Decision Library (DecLib).

22

9. Technical Support And Feedback
We believe that customer input is the most valuable source for creating successful products.
We continuously update and extend the Decision Library (DecLib) with new functionality, for specific

devices, for specific applications, to meet your specific needs, and provide supportive products around the
DeclLib.

23

